Hints for Writing Thread-Safe Code

Gene Cooperman
College of Computer and Information Science
Northeastern University, Boston, USA
gene@ccs.neu.edu

Northeastern

U N

Threads Overview

e CPU speed, performance of one core no longer rising with Moore’s Law

e Number of cores per CPU chip still rising approximately with Me&e Law: doubling
every two years

e High-end “server-class’ PCs (still under $10,000) typicallywendour CPUs on a
motherboard.

e As of this writing, “google: Multi-core processor” reports: 6 coresr [CPU chip
commonly available: e.g. AMD Phenom Il X6, Intel Core i7 Extrengbtion 980X

e Total: 24 cores on a P@ndrising

Northeastern

U N

Scaling to Many Threads

e To gain full efficiency on 24 cores, you must haatleast 24 threads today (in one
process, or spread among multiple processes).

e Multi-processing: Multiple processes can also share data by using the Linuxrayeié
fork (using copy-on-write). However, a single write to a data page forpewate copy
of that page. More cores places more pressure on cache and memory bus

e One can fork a child process after the parent process initialiaes)dourage maximal
sharing of data. But there are problems:

1. Some programs use lazy initialization.

2. Many objects have both read-only fiel@dter initialization) and read-write fields.
Examples of read-write fields occur due to caching of previousegmltemporary
intermediate values, re-use of objects to avoid allocationffggestc.). A single
write to a page can “poison” the performance by forcing a copy ofghge.

Northeastern

U N

Thread-safety

GOAL: Replace each process by a thread within a single process.

e Default for threads: All global data is shared.

e C keyword (also valid in GNU C++):_t hread
Any data declared with_t hr ead is thread-local (non-shared).

e Keywords supported by existing compilers:
GNU and Intel:__thread
Microsoft C++: __declspec(thread)

e For C++, thread-local keyword will be standardized as:
t hread_l ocal (upcoming “C++0x” standard)

e In C/C++, __thread/thread_| ocal is permitted only for static data -rot for fields
of dynamically created objects. Geant4dMT makes further transfboms to guarantee
dynamic data created by one threathi®ad-private (a generalization of thread-local).

e GeantdMT transforms Geant4 so that most dathrsad-private: data is thread-private
if only one thread accesses that data.

Northeastern

U N

Thread-safety (cont.)

Definition: A program routine ighread-safe if two threads can execute the same function
at the same time, and the result is the same as if they had exabatt function sequentially
(one thread at a time).

Definition: A program ispleasingly parallel if all routines are thread-safe. (When possible,
we would like all program routines to be pleasingly parallel.)

Northeastern

U N

“Hello, world.” for Thread-Safe Code

Il gcc -Ipthread thisProgramc; OR g++ -Ipthread thisProgram cpp
#i ncl ude <stdio. h>
#i ncl ude <pthread. h>

#i fndef NUM THREADS
define NUM THREADS 5
#endi f

typedef struct { int thread id; } thread args t;
__thread int thread id =-1; /* -1 neans uninitialized */

void *thread start(void *args) {
thread args t *thread args = (thread args_t *)args;
thread id = thread args->thread_id;
printf("My thread id is: %l\n", thread id);
return NULL;

Northeastern

U N

“Hello, world.” for Thread-Safe Code (cont.)

void *thread start(void *);

int main() {
pt hread_t thread] NUM THREADS] ;
thread_args_t thread_args[NUM THREADS]

int i;

for (i =0; i < NUMTHREADS; i++) {

thread args[i].thread id = i;

pthread create(&thread[i]), NULL, thread start, &thread args[i]));
}

for (i =0; i < NUMTHREADS; i++) { /* Wait for threads to finish. */
pthread join(thread[i], NULL);
}

return O;

Northeastern

U N

Three Classic Synchronization Techniques ===

]

1. pt hread_nut ex_|l ock(), pt hread_nmut ex_unl ock() : critical section executed by at
most one thread at a time

2. pthread_rw ock_rdl ock(), pthread_rw ock_w | ock : eithermultiplereadersor else
one writer allowed in critical section, withwriter priority.

3. producer-consumer : See
http://en.w ki pedi a. org/ w ki / Producer - consuner probl em#Usi ng semaphor es
for an example with working code.

http://en.wikipedia.org/wiki/Producer-consumer_problem#Using_semaphores

Northeastern

U N

Debugging

gcc -g -Q0 -Ipthread thisProgramc

gdb ./a. out

(gdb) break 31

(gdb) run

Starting program /home/ gene/ group/tal ks/ geant 4-t hread-safe-11/a. out

[New Thread 0xb75a96d0 (LWP 12897)]

[New Thread 0xb75a8b70 (LW, 12906)]

My thread idis: O

[New Thread Oxb6da7b70 (LWP 12907)]

My thread idis: 1

[Thread 0xb75a8b70 (LWP 12906) exited]
[Thread 0xb6da7b70 (LWP 12907) exited]

Breakpoint 1, main () at exanple.c:31

31 for (i =0; i < NUMTHREADS; i++) { /* Wait for threads to finish. */
(gdb) info threads

* 1 Thread 0xb75a96d0 (LWP 12897) nmin () at exanple.c: 31

Northeastern

U N

Debugging

(gdb) set schedul er-1locking on

(gdb) run

The program bei ng debugged has been started al ready.
Start it fromthe beginning? (y or n) y

Starting program /home/ gene/ group/tal ks/ geant 4-t hread-safe-11/a. out
[New Thread 0xb76316d0 (LW, 12971)]
[New Thread 0xb7630b70 (LWP 12972)]

Breakpoint 1, nmain () at exanple.c:31
31 for (i =0; i < NUMTHREADS; i++) { /* Wait for threads to finish. */
(gdb) info threads

6 Thread 0xb562cb70 (LWP 12976) Oxffffe430 in __ kernel vsyscall ()
5 Thread 0xb5e2db70 (LWP 12975) Oxffffe430 in __kernel vsyscall ()
4 Thread 0xb662eb70 (LWP 12974) Oxffffe430 in __kernel vsyscall ()
3 Thread 0xb6e2fb70 (LWP 12973) Oxffffe430 in __kernel vsyscall ()
2 Thread 0xb7630b70 (LWP 12972) O0xb7708658 in clone () ...

* 1 Thread 0xb76316d0 (LWP 12971) namin () at exanple.c: 3l

(gdb)

Northeastern

U N

Examples of Code that is not Thread-Safe

1. Shared object with writeable field:

2. Example (race condition): Field of object that caches lastpdational result for re-
use.

3. Example (atomicity): Code that keeps count of number of.uses. Must replace by
atomic increment: In GNU gcc-4.1 and later, use: GNUsync_f et ch_and_add()

4. Dangers of a global variable that iswriteable.
Depending on the code, some possible issues encountered are:

(a) Race condition: Thread A and thread B race to write to a variable. Whoever writes
last wins. Later results depend on who wrote last.

(b) Lack of bit compatibility: Thread Aatomically reads a global variable, adds
a valuex and writes it back. Thread B alsaiomically adds the valug to the
same global variable. Hence, we either addy or y+ x to the global variable.
Unfortunately, on real computers, addition is not commutatit@e least significant
bits. The least significant bits are no longer reproducible.

Northeastern

U w

Dangers of a global variable that is writeable L2

4. Dangers of a global variable that iswriteable ... (cont.)

(c) Performance bug 1: High-end motherboards support two or four CPU chips, but
without cache on the motherboard. A write by one thread to a global variable
must propagate to all CPU chips. This off-chip communicatiosla@sv. In one
example that we encountered, verbose output was turned offfforeaty. But a
“harmless” write to an associated shared global variable hadbeen turned off.
This performance bug prevented scalability of Geant4MT beytotial6 cores.

(d) Performance bug 2: Every malloc package must include some variation on a
central lock to handle the case when Thread A allocates memdrylanead B frees
that memory. This is inherently non-scalable. Even the bedte@hewer malloc
packages could not handle this.

Solution: In most instances, when Thread A of Geant4MT allocates memory,
Thread A is guaranteed to free it. For those instances, we provitead-private
malloc arena (memory pool) for each thread of Geant4MT. This avbiel need for

a central lock. We call this TPMalloc (Thread-Private Malloc).

See: Xin Dong, Gene Cooperman and John Apostolakis, “Multithrela@eant4-:
Semi-automatic Transformation into Scalable Thread-Paralleivaodt', Proc. of
Euro-Par 2010 — Parallel Processifpringer-Verlag, Lecture Notes in Computer
Scienceb272 Springer, 2010, pp. 287-303

Northeastern

U N

Combining Geant4dMT with Sequential Software

Problems to watch out for:

e User-defined Hits, SteppingAction, Scorer, etc. may use duatas not thread-safe.

e Analysis packages are usually not multi-threaded. Multipteads must hand off 1/O
for analysis to sequential code.

Example: When using Root, the information computed by an event is passea
framework. Root processes that information while Geant4 simaildte next event.
It is the responsibility of the framework to free the memory allocabgdthat first
event. In this context, Geant4MT would require additional &alén, such as creating a
special “framework thread”. That framework thread would be resptnéip passing the
information of an event to Root, and later freeing the memory assatwith that event.

Northeastern

U N

Random Number Generators and Reproducibility

1. With multiple threads, each thread uses a separate randonengerierator.

2. Torecover determinism (reproducibility), one must associategue random seed with
each event number.

3. Bit compatibility (but see caveat below): As the number of threads increases eath ev
number continues to produce the same results.

NOTE: For performance reasons, Geant4 will re-use previously computatisré®m an
earlier event. In GeantdMT, a given thread “knows” only abouli&aevents computed by
the same thread. (This is due to use oft hr ead keyword: thread-local data.) So, in order
to guarantee full bit compatibility (including the least siiggant bits) between successive
runs, one must provide a static thread schedule: each eventenusndissociated not only
with a unique random seed, balso with a unique thread. Thus, each event number always
sees the same history of earlier events by that thread.

Northeastern

U N

Tools from GeantdMT for Verifying Correctness

WARNING: Intended for Geant4MT developers (primarily for experts -egsle talk to us
if you would like to use these tools)

Verifying comparable results between Geant4 and Geant4MT:

1. Bisimulation between Geant4 and Geant4MT with one thread

2. Geant4dMT with one thread versus many threads (bit compétibilidesign when using
Geant4dMT's static scheduling of threads)

(See talk by Xin Dong from Tuesday for details.)

Northeaster

U N

Tools from GeantdMT for Verifying Correctness (cont.)

Verifying Geant4MT assumptions of read-only data after initialization: comparable
results between Geant4 and Geant4MT

1. Sandard policy: Remove write permission from memory pages (RAM) that is assumed
read-only. If there is an attempt to write to read-only memory, Gédmntill halt and
report the instruction of code and the data address for the \oalati

2. Production run policy: For added robustness during a production run, an alternative
policy is possible. If a read-only memory violation is detectealt all other threads,
and temporarily grant write permission to the corresponding reagdfaamory. Then
redo the corresponding event. Finally, again remove write pelonissd restart other
threads at the beginning of their current event.

(See talk by Xin Dong from Tuesday for details.)

